Arizona's College and Career Ready Standards - Mathematics - 6th $^{\text {th }}$ Grade Standards Placemat

1. Connecting ratio and rate to whole number multiplication and division and
using concepts of ratio and rate to solve problems using concepts of ratio and rate to solve problems

Students use reasoning about multipication and division to solve ratio and rate
problems about quantities. By viewing equivalent ratios and rates as deriving problems about quanntites. By biewing equivalent ratios and dates as deriving
from, and extendigng pais of ows (or colums) in the muttipicaction table, and
by andying simple
 students connect their understanding of multipicication and division with ratios
and rates. Thus students expand the scope of problems for which they can use multipication and division to solve problems, and they connect ratios and
fractions. Students solve a wide variety of problems involving ratios and rates.
2. Completing understanding of division of fractions and extending the notion of

- Students use the meaning of fractions, the meanings of multipication and
 and explain why the prococedurester for divididing fratation and make sense. Students use these operations to solve problems. Students extend their previous
understandings of fumber and the ordering of ummers to the fuls system of
nater rational numberss which includdes negadeative rational numbers, and in particular
negative integers. They reason about the negative integess. They reason about the ordere and absolute avalue of frational
numbers and about the location of points in all four quadrants of the coordinate numbers
plane.

3. Writing, interpreting, and using expressions and equations Students understand the use of variables in mathematical expressions. They
write expressions and equations that correspond to given situations, evaluate expressions, and use expressions and formulas to solve problems. Students the properties of operations to rewitte expressions in equivalent forms. Students know that the solutions of an equation are the values of the variables
 one-step equations. Students construct and analyze tabbess such has tables of quantities that are in equivalent ratios, and they use equations (such as $3 x=y$) to describe relationships between quantities.
Developing understanding of statistical thinkking Buiding on and reinforcing their understanding of number, students begin to Building on and reinforcing their understanding of number, students begin to
develop their abilty to think statisitically Students recogniex that a data
dstribution max not have a definite center and that different ways to measure distribution may not have a definite centerand hat dififerent ways to measure
center yield different values. The median measures center in the sense that it
is sroughly the middle value. The mean measures center in the sense that it is The value that each data point would take on if the total of the data valueswers ecoognize that a measure of variability (interquartilie range or meant absolute
deviation) can also be usefu for summarizg sets of datata can have the same mean and median yet be disitinguished by thei sets of data can have hie same mean and median yet be isitinguished by
variabilty. Students learn to describe and summarize numerical data sets,
tidetsing dentifing custers, peaks, caps, and symmetry, considering the context in
which the data were collected.
atios and Proportional Relationships - Understand ratio concepts and use ras
6.RP.A.1: Understand the concept of a ratio and use ratio language to describe a to beaks in the bird house at the zoo was $2: 1$, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes.
6.RP.A.2: Understand the concept of a unit rate alb associated with a ratio a:b with b $\neq 0$, and use rate language in the context of a ratio relationship. For
example, TThis recipe has a ratio of 3 cups of flour to 4 cups of sugar, so example, "This recipe has a aratio of 3 cups of flour to 4 cups of sugar, so
there is $3 / 4$ cup of four for each cup of sugar." We paid $\$ 55$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." "Note: Expectations for unit
rates in this grade are limited to ono-complex fractions.) rates in this grade are linited to non-complex fractions.)
6.RP.A.3: Use ratio and rate reasoning to solve real-world and mathematical problems, e .g., by reasoning about tables of equivaiens.
diagrams, double number line diagrams, or equations.
a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pair
values on the coordinate plane. Use tables to compare ratios.
b. Solve unit rate problems including those involving unit pricing and that rate, how many lawns could be mowed in 35 hours? At what rate that rate how many lawns
were lawns being mowed?
c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity
means $30 / 100$ times the quantity); solve problems involving finding th means $30 / 100$ times the quantity); solve problems involving finding the
whole, given a part and the percent.
d. Use ratio reasoning to convert measurement units; manipulate and

The Number System - Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
6.NS.A. $:$: Interpret and compute quotients of fractions, and solve word problems models and equations to represent the problem. For example, create a stor context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multipicication and division to explain
that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general., $(a / b) \div(/ d d)=$ that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, (a/b) $\div(/ / d d)=$
adbc.) How much chocolate will each person get if 3 people share $1 / 1 / 21 b$ of chocolate equally? How many $3 / 4$-cup senvings are in $2 / 3$ of a cup of yogur? How wide is a rectangular strip of land with length $3 / 4$ mi and area
$1 / 2$ square mi? $1 / 2$ square mi?
Compute fluently with multi-digit numbers and find common factors and multiples.
6.NS.B.2: Fluently divide mult-digit numbers using the standard algorithm.
6.NS.B.3: Fluently add, subtract, multiply, and divide mult--igigit decimals using the standard algorithm for each operation.
6.NS.B.4: Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal
to 12. Use the distributive property to express a sum of two to 12 . Use the distributive property to express a sum of two whole numbers
$1-100$ with a common factor as a multiple of a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole nu
with no common factor. For example, express $36+8$ as $4(9+2)$.
Apply and extend previous understandings of numbers to the system of rational numbers.
6.NS.C.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature abovelbelow zero, elevation above/below sea level, credits/debits,
positive/negative electric charge): use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
6.NS.C.6: Understand a rational number as a point on the number line. Extend number line diagrams and coordianate axes familiar from previous grades to
a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own
opposite.
b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordere
pairs \mathbf{y} iffer only by signs, the locations of the points are related by peflections across one or both axes.
c. Find and position integers and other rational numbers on a horizontal or retional numbers on a coordinate plane.
6. NS.C.7: Understand ordering and absolute value of rational numbers.
a. Interpret statements of inequality as statements about the relative interpret - $3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
b. Write, interpret, and explain statements of order for rational numbers in
real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact
that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.

Understand the absolute value of a rationa number as its distance from negative quantity in a real-world situation For example for an account balance of -30 dollars, write $|-30|=30$ to describe the size of the debt in balance
dollars.
d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 doliars. 8: Solve real-world and mathematical problems by graphing points in all four
quadrants of the coordinate plane. Include use of coordinates and absolut value to find distances between points with the same first coordinate or the same second coordinate.
AZ.6. NS.C.9: Convert between expressions for positive rational numbers, including
fractions, decimals, and percents.
Expressions and Equations - Apply and extend previous understandings of arithmetic to algebraic expressions.
6.EE.A.1: Write and evaluate numerical expressions involving whole-number

6EEA.2. Write read
a. Write expressionate expressions in which letters stand for numbers. Wrte expressions that record operations with numbers and with letters
standing for numbers. For example, express the calculation "Subtract standing for numb.
from 5^{\prime} as $5-y$.
b. Identify parts of an expression using mathematical terms (sum, term product, factor, quotient, coeficient); ,iew one or more parts of an
expression as a single entity. For example describe the enpresion +7) as a product of two factors, view ($8+7$) as both a single entity and a sum of two terms.
Evaluate expressions at speciicic values of their variables. Include Perform arithmetic operations indududing those involving whoblems. Perform arithmetic operations, including those involving whol--number
exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.
6.EE.A.3: Apply the properties of operations to generate equivalent expressions. Fo example, apply the distributive property to the expression $3(2+x)$ to
produce the equivialent expression $6+3 x$; apply the distributive roperty the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$
apply properties of operations to $y+y+\gamma$ to produce the apply properties of operations to $y+y+y$ to produce the equivalent
expression $3 y$.
6.EE.A.4: Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is
substitute into them.).For example, the expressions $y+y+y$ and $3 y$ are
equivalent beccuase they name the same number regardless of which equivalent tbecause
Reason about and solve one-variable equations and inequalities,
6.EE.B.5: Understand solving an equation or inequality as a process of answering a inequality true? Use substitution to determine whether a given number in specified set makes an equation or inequality true
6.EE.B. 6 : Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on hie purpose alt
number in a specified set.
6.EE.B.T: Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x
all nonnegative rational numbers.
6.EE.B.8: Write an inequality of the form $x>c$ or $x<c$ to represent a constraint inequalities of the form $x>c 0 x<$ chave infinitly m solytion inequalities of the form $x>c$ or $x<c$ have infinitely many solutions;
represent solutions of such inequalities on number line diagrams.
Represent and analyze quantitative relationships between dependent and
6.EE.C.9: Use variables to represent two quantities in a real-world probbem that change in realitionstip to one another, write an equation to express one thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate hese to the equation. For example, in a problem involving motion at constant speed, ist and graph ordered pairs of distances and imes, and wite the
equation $d=65 t$ to represent the relationship between distance and time.
Geometry - Solve real-world and mathematical problems involving area, surface area, and volume.
6.G.A.1: Find the area of right triangles, other triangles, special quadrilaterals, and other shapess; apply these techniques in the context of solving real-world and mathematical problems
6.G.A.2: Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge engths, and
show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w h$ and $V=b h$ to find volume of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.
6.G.A.3: Draw polygons in the coordinate plane given coordinates for the vertices; coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
6.G.A.4: Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techni
problems.
Statistics and Probability - Develop understanding of statistical variability.
6.SP.A.1: Recognize a staristical question as one that anticipates vais data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statisticical question because one anticipates variability in
students' 2 ages.
6.SP.A.2: Understand that a set of data collected to answer a statistical question ha a distribution which can be described by its center, spread, and overal
shape. shape.
s.
3.
6.SP.A.3: Recognize that a measure of center for a numerical data set summarizes how its values vary with a single number
Summarize and describe distributions.
on a number line, including dot plots,
6.SP.B.4. Display numerical adata
histograms, and box plots.
6.SP.B.5: Summarize numerical data sets in relation to their context, such as by
a. Reporting the number of observations.
b. Describing the nature of the attribute under investigation, including how was measured and its units of measurement.
c. Giving quantitative measures of center (median and/or mean) and variabiity (interquartile range and/or mean absolute deviation), as well
as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
d. Relating the choice of measures of center and variability to the shape of

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.

Construct viable arguments
5. Use appropriate tools strategically.
6. Attend to precision.
. Look for and make use of structure
Look for and express regularity in repeated reasoning.

